Clinical Application of Real-Time CGM: Professional Use, Pediatrics and the Pathway to the Bionic Pancreas

A CME-certified dinner satellite symposium to be held in conjunction with the American Diabetes Association’s 74th Scientific Sessions

Saturday, June 14, 2014 • 6:15 PM
InterContinental • San Francisco, CA
Agenda and Faculty

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:15 PM</td>
<td>Registration and Dinner</td>
<td></td>
</tr>
<tr>
<td>6:30 PM</td>
<td>Welcome and Introduction</td>
<td>Jay S. Skyler, MD, MACP</td>
</tr>
<tr>
<td></td>
<td>Clinical Application of Real-Time CGM: Professional Use, Pediatrics</td>
<td>Davida F. Kruger, MSN, APN-BC, BC-ADM</td>
</tr>
<tr>
<td></td>
<td>and the Pathway to the Bionic Pancreas</td>
<td></td>
</tr>
<tr>
<td>6:40 PM</td>
<td>Professional Use of Real-Time CGM</td>
<td>Davida F. Kruger, MSN, APN-BC, BC-ADM</td>
</tr>
<tr>
<td>7:10 PM</td>
<td>CGM and Pediatrics</td>
<td>Bruce Buckingham, MD</td>
</tr>
<tr>
<td>7:40 PM</td>
<td>Pathway to the Bionic Pancreans</td>
<td>Steven J. Russell, MD, PhD</td>
</tr>
<tr>
<td>8:10 PM</td>
<td>Clinical Consult Case Studies & Q&A</td>
<td>All Faculty</td>
</tr>
<tr>
<td>8:45 PM</td>
<td>Adjourn</td>
<td></td>
</tr>
</tbody>
</table>

Moderator

Jay S. Skyler, MD, MACP
Professor of Medicine, Division of Endocrinology, Diabetes, and Metabolism at the University of Miami Miller School of Medicine Deputy Director for Clinical Research and Academic Programs at the Diabetes Research Institute Miami, Florida

Faculty

Bruce Buckingham, MD
Professor of Pediatric Endocrinology Stanford School of Medicine and Stanford Children's Hospital Palo Alto, California

Davida F. Kruger, MSN, APN-BC, BC-ADM
Nurse Practitioner Henry Ford Health System Division of Endocrinology, Diabetes, Bone and Mineral Diseases Detroit, Michigan

Steven J. Russell, MD, PhD
Assistant Professor of Medicine Harvard Medical School Massachusetts General Hospital Diabetes Research Center Boston, Massachusetts
Welcome and Introduction

Jay S. Skyler, MD, MACP

Jay S. Skyler, MD, MACP, is currently a Professor of Medicine, Pediatrics, & Psychology, in the Division of Endocrinology, Diabetes, & Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida. He is Deputy Director for Clinical Research and Academic Programs at the Diabetes Research Institute, University of Miami, and is Adjunct Professor of Pediatrics at the Barbara Davis Center for Childhood Diabetes, University of Colorado.

Dr. Skyler is a past President of the American Diabetes Association, the International Diabetes Immunotherapy Group, and the Southern Society for Clinical Investigation, and was a Vice-President of the International Diabetes Federation.

Dr. Skyler was founding Editor-in-Chief of Diabetes Care.
Davida F. Kruger, MSN, APN-BC, BC-ADM, has been a certified nurse practitioner in diabetes for more than 30 years at Henry Ford Health System in Detroit, Michigan. Her role includes both clinical practice and research. She is board certified by the American Nurses Association Credentialing Center in Primary Care and by the American Association of Diabetes Educators in Advanced Diabetes Management. She is past Chair of the American Diabetes Association’s Research Foundation and has served on the American Diabetes Association’s Research Policy Committee. She is also a Past President, Health Care and Education of the American Diabetes Association. She served as Editor of Diabetes Spectrum from 2005-2008. Presently, she serves as the Editor In Chief of Clinical Diabetes. Ms. Kruger has been a principal investigator on numerous research projects and has written widely on diabetes care, authoring the book The Diabetes Travel Guide 2nd edition (2006). Her awards include the Florence Nightingale award for excellence in research, ADA’s Rachmeil Levine Award for Distinguished Service, ADA’s Award for Outstanding Service in Diabetes Research Funding, The ADA Wendell May’s Award, Wayne State University School of Nursing 2014 Alumna of the year and Henry Ford Health System Nursing Excellence Clara Ford Pillar award in Research and Education 2014.
Blood glucose data and A1c results do not provide the complete picture for either the patient or the healthcare provider. We have developed and continue to grow an outpatient program for professional continuous glucose monitoring (CGM). To date, we own 35 CGM devices that are loaned to our patients to gather 7 days of real-time CGM data. Over the past 4 years this program has grown in two sites to over 500 professional CGM evaluations annually.

Take-Home Messages For Professional CGM

- Patient selection is key
- Use for both medical management and ownership
- Match products to patient needs
- Education is the essential component for success
- CGM devices are accurate to use today to improve patients’ outcomes
- Reimbursement should not be a barrier now that more national payers are covering CGM

Why Use Professional CGM in Your Practice?

- Provides insight into trending information/pattern management
- Identifies insulin action (insulin dose effect) and potential need for additional adjustments/medications to control postprandial glucose
- Provides information about timing of food digestion and timing of insulin administration based
- Provides continuous data for overnight basal testing and assessment of nocturnal hypoglycemia
- Find patterns that otherwise could not be detected by finger stick alone
- Find patterns of undetected low BG in patients at treatment goal
- Allows for efficiently and effectively identify areas of clinical challenges and apply appropriate medical management to address that specific clinical issue.
- And so much more……..

This presentation will:
- Discuss the components, logistics and clinical practice of a successful real-time CGM professional program developed at the Henry Ford Health System, Division of Endocrinology
- Outline the stepwise approach on how to identify the clinical issues that CGM downloads and reports identify
- Review case studies to demonstrate how professional CGM reports can lead to effectively optimize the development of a patient care plan
Bruce Buckingham, MD, is Professor of Pediatric Endocrinology at Stanford University and Packard Children’s Hospital. Dr. Buckingham’s research interests have focused on continuous glucose monitoring in children and “closing-the-loop.” These efforts are being funded by the Juvenile Diabetes Research Foundation, National Institutes of Health and the Helmsley Foundation and are currently focused on preventing nocturnal hypoglycemia with a predictive low-glucose suspend system, and full overnight closed-loop. Other closed-loop studies are focused on 24/7 closed-loop in the ambulatory setting and assessing ways to improve insulin infusion sets to prolong their wear.

The Subcutaneous Space and Sensor Ratings

- Patient selection is key
- There is about a 5-6 minute lag time between blood and the subcutaneous space
- No significant difference if using buttocks, arms or abdomen – The SQ is the SQ
- Use of extra adhesives does not effect sensor performance
- 86% are functioning for 7 Days
Dr. Buckingham’s talk will focus on the use of sensors in pediatric patients, emphasizing that there are no body size or habitus limits, but the size of the sensor and transmitter matters. Continuous glucose monitoring (CGM) is very helpful to patients and parents in real-time and to physicians, especially when the information is integrated with insulin pump data. Adolescents are always a challenging group because, in general, diabetes is not their number 1 priority. We have used CGM in diabetes camp studies and they have functioned very well despite rigorous camp activities which include swimming, capture the flag, climbing walls, etc.

We have also tested remote monitoring with CGMs at the diabetes camps and found this very helpful in preventing nocturnal hypoglycemia. Remote monitoring is a feature which has been available to families with the Medtronic MySentry and will soon be available to families when the Dexcom “Share” is released. The future is integration of continuous glucose sensors with pumps so that the burden of diabetes management can be decreased with an algorithm helping to regulate insulin delivery to compensate for missed meal-boluses and the inaccuracies of carbohydrate counting (which often plague adolescent diabetes management).
Steven J. Russell, MD, PhD, is Assistant Professor of Medicine at Harvard Medical School and an Attending Physician at Massachusetts General Hospital. He completed MD/PhD training at University of Texas Southwestern Medical School and Residency and Fellowship at the Massachusetts General Hospital. He is board certified in Internal Medicine and Endocrinology, Diabetes & Metabolism.

Dr. Russell is a the principal clinical investigator of a collaboration between Massachusetts General Hospital and Boston University to develop a wearable bionic pancreas system for automated glycemic management in people with diabetes mellitus. Dr. Russell’s other projects include evaluation of continuous glucose monitoring technology, methods for automated management of glucose in hospitalized patients, investigations of methods to improve insulin pharmacokinetics, and development of a device for minimally invasive continuous insulin monitoring.

Dr. Russell’s research is supported by the National Institutes of Health, The Leona M. and Harry B. Helmsley Charitable Trust, the Banting Foundation, the American Diabetes Association, and the Juvenile Diabetes Research Foundation.
A bionic pancreas delivering insulin and glucagon has achieved excellent, automated blood glucose control in type 1 diabetes in two closely supervised outpatient studies. The system improved mean blood glucose and reduced hypoglycemia in both adults and adolescents. Equally important, it reduces the burden of diabetes management: The amount of input required from the patient wearing the bionic pancreas is limited to twice daily calibrations of a continuous glucose monitor (CGM) along with changing infusion sets and reservoirs. Meals may be announced, but this is not required, and no carbohydrate counting is required when meals are announced. Key elements in the success of the bihormonal bionic pancreas have been the availability of an accurate CGM and the development of adaptive algorithms for dosing of insulin and glucagon. Our independent, head-to-head tests have led us to choose the Dexcom G4 Platinum to provide the input to the bionic pancreas. Although the performance of this CGM is already sufficient for successful use in bionic pancreas, further improvements in accuracy, resistance to interfering substances, and a reduction in the dependence on calibrations are eagerly awaited. We have developed and tested adaptive algorithms that require no information about the patient other than body weight for initialization and CGM glucose data; no information about past insulin use is required and the system can adapt to changing insulin needs in less than one day. If the CGM glucose stream is interrupted, intermittent glucose measurements can be substituted until the CGM signal can be reestablished. The future of the bihormonal bionic pancreas depends on the availability of a more stable glucagon formulation, and we are currently testing such a formulation. More rapid insulin absorption would further improve glycemic control, but is not necessary to achieve dramatic improvements over the current standard of care. The first home use study of the bihormonal bionic pancreas is currently underway at Massachusetts General Hospital, with three other sites to follow, and study completion scheduled for early 2015.
Intended Audience
Endocrinologists, primary care physicians, nurse practitioners, certified diabetes educators, and other healthcare professionals interested in the management of diabetes, attending the ADA 2014 Annual Scientific Sessions.

Statement of Need
Self-monitoring of blood glucose is a core component of a diabetic patient’s management but only provides a measurement of blood glucose levels at a specific point in time, often missing trends, hyperglycemic or hypoglycemic excursions. HbA1c is even more limited and reports an average reading over 90 days; therefore it is incapable of alerting the patient of fluctuations in blood glucose at any point in time.

Selection of an appropriate continuous glucose monitoring (CGM) device is important because improvements in accuracy and reliability are ongoing. Real-time CGM is one cornerstone of optimal glycemic control. Each varies; relying on different sensing technology and requiring the traditional finger-stick for confirmation of alerts. The mean absolute relative difference (MARD) between sensor readings and reference glucose levels can vary by as much as 20% with worrisome discrepancies in the hypoglycemic range. But new generation devices have significantly improved MARD measurements. These devices have shorter lag times and improvements in accuracy. Many physicians are lacking the appropriate level of knowledge to employ CGM as part of their practices. Educational programs focused on these knowledge gaps will enable healthcare professionals to provide improved patient care.

Educational Objectives
At the conclusion of this activity, participants should be better able to:

1. Identify methods for optimization of therapy and improve clinical outcomes using real-time (RT) personal and professional continuous glucose monitoring (CGM) in both adults and pediatrics
2. Employ applicable management strategies in clinical practice for personal and professional RT-CGM in both adults and pediatrics
3. Discuss the progress and clinical studies of the novel approach to the bionic pancreas, and next steps toward developing the bionic pancreas

Accreditation and Certification
This activity has been planned and implemented in accordance with the Essential Areas and policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint providership of Dannemiller and CogniMed Inc. Dannemiller is accredited by the ACCME to provide continuing medical education for physicians.

Dannemiller designates this live activity for a maximum of 2.25 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with their extent of participation in the activity.

Statements of Credit will be provided by email following activity participation and upon completion and return of the evaluation form to CogniMed Inc. via submission at the end of the activity; by mail to CogniMed Inc., 70 South Orange Avenue, Suite 230, Livingston, NJ 07039; or by fax to 973-758-0052. Please allow 4 to 6 weeks for the delivery of your statement. In the event you have questions about this activity or do not receive your certificate, please e-mail cme@dannemiller.com.

Content Review Statement
To resolve identified/potential conflicts of interest, the educational content was fully reviewed by a physician member of the Dannemiller Clinical Content Review Committee who have no financial relationships with commercial interests. The resulting certified activity was found to provide educational content that is current, evidence based, and commercially balanced.

Disclaimer
The content and views presented in this educational activity are those of the authors and do not necessarily reflect those of Dannemiller, Cognimed Inc, or Dexcom. This material is prepared based upon a review of multiple sources of information, but it is not exhaustive of the subject matter. Therefore, healthcare professionals and other individuals should review and consider other publications and materials on the subject matter before relying solely upon the information contained within this educational activity.

Disclosure Statement
It is the policy of Dannemiller to ensure fair balance, independence, objectivity, and scientific rigor in all programming. All faculty participating in sponsored programs are expected to identify and reference off-label product use and disclose any significant relationships with those supporting the activity or any others whose products or services are discussed. The faculty for this activity have disclosed that there will not be discussion about the use of products for non-FDA-approved indications. In accordance with the Accreditation Council for Continuing Medical Education standards, parallel documents from other accrediting bodies, and Dannemiller policy, the following disclosures have been made:

Dannemiller Staff
Mark T. Nadeau, MD, MBA, FAAFP, Clinical Content Reviewer, has nothing to disclose.

Gordon Ringer, Project Manager, has nothing to disclose.

CogniMed Inc Staff
Estelle Perera, Senior Director, Scientific Affairs and Program Design has nothing to disclose.

Nancy Vogel, Production Editor, has nothing to disclose.

Moderator
Jay S. Skyler, MD, MACP, is a board of directors member to Dance Biopharm; Dexcom; and SynAlpha; is a scientific advisory board member of Boehringer-Ingelheim; Halozyme, Inc; Intarcia; Orgenesis; Sanofi; Valeritas LLC; and ViaCyte; received research support from Mesoblast; and ViaCyte; is an advisor/consultant to Astra-Zeneca/Bristol-Myers; Elcelyx; Ideal Life; Novo Nordisk; NPS Pharma; and PhaseBio; and is a Shareholder of Dance Biopharm; Dexcom; Ideal Life; SynAlpha; and Tandem Diabetes Care.

Faculty
Bruce Buckingham, MD, is a consultant to Medtronic; Novo Nordisk; and Sanofi; and is an investigator for Dexcom and Medtronic.

Davida F. Kruger, MSN, APN-BC, BC-ADM, is on the advisory boards of Abbott; Boehringer-Ingelheim; Dexcom; Eli Lilly and Company; Halozyme; Janssen; Novo Nordisk; and Sanofi Aventis; is on the speakers’ bureaus of Astra-Zeneca/ Bristol-Myers, Janssen; Novo Nordisk; Janssen; and Valeritas; and has received grant/research support from Astra-Zeneca/ Bristol-Myers, Eli Lilly and Company; Halozyme; Hemsley Foundation; and Novo Nordisk.

Steven J. Russell, MD, PhD, is an investigator for Dexcom.
A unique CME-certified initiative committed to improving outcomes in diabetes management through education about continuous glucose monitoring.
A unique CME-certified initiative committed to improving outcomes in diabetes management through education about continuous glucose monitoring.

Jointly sponsored by

This activity is supported by an independent educational grant provided by dexcom®